- 无标题文档
查看论文信息

中文题名:

 高精度姿态敏感器联合定姿方法研究    

姓名:

 蒋唯娇    

学号:

 17011210215    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081001    

学科名称:

 工学 - 信息与通信工程 - 通信与信息系统    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 通信工程学院    

专业:

 信息与通信工程    

研究方向:

 图像视频处理与传输、计算机视觉、芯片设计    

第一导师姓名:

 王柯俨    

第一导师单位:

  西安电子科技大学    

完成日期:

 2020-04-04    

答辩日期:

 2020-05-24    

外文题名:

 Research on Integrated Attitude Determination Method Based on High Precision Attitude Sensor    

中文关键词:

 星敏感器 ; 陀螺 ; 角位移传感器 ; 姿态确定 ; 卡尔曼滤波    

外文关键词:

 star sensor ; gyro ; angular displacement sensor ; attitude determination ; Kalman filter    

中文摘要:

高精度姿态测量设备获取的姿态信息对提升光学遥感卫星图像几何质量和目标定位精度具有重要的意义。在卫星定姿精度需求不断提升的应用背景下,本文以姿态确定理论为研究基础,以多源数据联合处理为核心,重点突破了星敏感器、陀螺以及角位移传感器联合定姿关键技术,实现了提高卫星姿态精度和稳定性的研究目标。论文完成的主要工作和创新点包括:

(1)结合姿态运动学方程和敏感器量测模型,构造线性联合定姿模型;在分析扩展卡尔曼滤波算法原理的基础上,设计实现了基于双向扩展卡尔曼滤波的星敏感器和陀螺联合定姿算法,能够有效提高姿态数据的利用性,与传统的扩展卡尔曼滤波算法相比,提升了联合定姿的精度。

(2)将神经网络理论引入姿态确定领域,提出了基于极限学习机的改进双向自适应扩展卡尔曼滤波的联合定姿算法,有效抑制星敏量测噪声,改善定姿模型存在系统误差的问题。仿真试验表明,该方法具有良好的泛化能力,定姿精度较双向自适应扩展卡尔曼滤波在俯仰和偏航方向提升10%左右,且稳定性更好。

(3)以星敏感器四元数作为量测方程,考虑高阶误差,推导了非线性定姿模型;利用采样点传递状态概率密度来替代线性化处理方式,设计实现了基于无迹卡尔曼滤波的星敏感器和陀螺联合定姿算法。仿真试验表明,算法精度优于传统的扩展卡尔曼滤波算法,适用于强非线性系统,改善了联合定姿精度。

(4)针对强非线性非高斯系统,引入粒子滤波的思想,设计实现了基于粒子滤波的星敏感器和陀螺联合定姿算法,仿真试验验证该算法较通常的非线性滤波处理方法,如无迹卡尔曼滤波算法的精度进一步提升。同时,与扩展卡尔曼滤波、双向扩展卡尔曼滤波、无迹卡尔曼滤波等算法进行对比,分析各自特点及优势,开展了不同采样率、不同精度的陀螺和星敏数据的联合定姿性能仿真分析,总结算法的适应性。

(5)依据精密定姿理论,设计实现了高频角位移数据仿真方法;结合角位移传感器模型特点,通过降采样处理的方式,利用扩展卡尔曼滤波、双向扩展卡尔曼滤波以及无迹卡尔曼滤波算法实现了星敏和角位移的联合定姿,有效地得到了高精度高频率的姿态数据。

 

外文摘要:

The attitude information obtained by high precision attitude measurement equipment is of great significance to improve the optical remote sensing satellite’s image geometric quality and the target location accuracy. Due to the background of the increasing demand for satellite attitude accuracy, this thesis takes the attitude determination theory as the research basis, takes the multi-source data integrated processing as the core research thought, this thesis focuses on breaking through the integrated attitude determination algorithms of star sensor, gyro and angular displacement sensor, and realizes the research goal of improving satellite attitude accuracy and stability. The main research contents of this thesis include:

(1) Combined with the attitude kinematics equation and attitude sensor measurement model, this thesis construct a linear system of integrated attitude determination. On the basis of analyzing the principle of extended kalman filter algorithm, an integrated attitude determination algorithm of star sensor and gyro based on forward-backward extended kalman filter is designed and implemented, which can effectively improve the utilization of attitude data. Compared with the traditional extended kalman filter, the accuracy of integrated attitude determination is improved.

(2) The neural network theory is introduced into the field of integrated attitude determination, and an improved forward-backward adaptive extended kalman filter integrated attitude determination based on the limit learning machine is proposed, which can effectively suppress the star sensor measurement noise and improve the problem of systematic error in attitude determination model. The simulation results show that the proposed method has good generalization ability, and the accuracy of attitude determination is about 10% higher than that of forward-backward adaptive extended kalman filter in pitch and yaw direction, and its stability is better.

(3) Taking the quaternion of star sensor as the measurement equation and considering the higher order error, the nonlinear attitude determination model is derived. By using the sampling point transfer state probability density to replace the linearization method, the integrated attitude determination algorithm of star sensor and gyro based on unscented kalman filter is designed and implemented. Simulation results show that the accuracy of the algorithm is better than that of the traditional extended kalman filter algorithm.

(4) For strongly nonlinear non-gaussian systems, the idea of particle filter is introduced to design and implement the integrated attitude determination algorithm of star sensor and gyro based on particle filter. Simulation experiments verify that the algorithm is more accurate than the usual nonlinear filtering methods, such as unscented kalman filter algorithm. At the same time, compared with extended kalman filter, forward-backward extended kalman filter, unscented kalman filter and other algorithms, analyzed their characteristics and advantages, carried out different sampling rates, different precision of gyro and star sensor data integrated attitude determination performance simulation analysis, summed up the adaptability of the algorithm.

(5) The simulation method of high frequency angular displacement data is designed and realized based on the theory of precise attitude determination. Combined with the characteristics of the angular displacement sensor model, the extended kalman filter, forward-backward extended kalman filter and unscented kalman filter algorithm are used to realize the integrated attitude determination of star sensor and angular displacement, which can effectively obtain high precision and high frequency attitude data.

参考文献:
[1] 刘世杰. 高分辨率卫星遥感影像成像模型与定位技术研究[D]. 上海: 同济大学硕士学位论文, 2008.
[2] 王任享, 王建荣. 无地面控制点卫星摄影测量探讨[J]. 测绘科学, 2015, 40(2): 3-12.
[3] 王薇, 赵利平. GeoEye-1立体像对定位精度及其应用分析[J]. 遥感信息, 2012(1): 48-51.
[4] 王任享, 天绘一号卫星无地面控制点摄影测量关键技术及其发展历程[J]. 测绘科学, 2013, 38(1): 5-7.
[5] 王任享, 王建荣, 胡莘.天绘一号03星定位精度初步评估[J], 测绘学报, 2016, 45(10): 1135-1138.
[6] 谢俊峰, 唐新明, 莫凡等. 资源三号国产星敏感器事后定姿方案设计与系统实现[J]. 武汉大学学报(信息科学版), 2017, 42(4): 434-440.
[7] 王任享.我国无地面控制点卫星摄影测量综述[J].海洋测绘, 2008, 8(5): 1-8.
[8] 王任享.中国无地面控制点摄影测量卫星追述(二)—1: 1万传输型摄影测量卫星技术思考[J].航天返回与遥感, 2014, 35(2): 1-5.
[9] 曹阳. 纳型星敏感器新技术研究[D].中国科学院国家空间科学中心,2016.
[10] 李醒飞, 周新力, 吴腾飞等. 一种MHD角速度传感器与MEMS陀螺仪组合测量系统信号融合的方法[J]. 天津大学学报: 自然科学与工程技术版, 2018.
[11] ASADNEZHAD M, ESLAMIMAJD A, HAJGHASSEM H. Optical system design of star sensor and stray light analysis[J]. Journal of the European Optical Society-Rapid Publications, 2018, 14(1): 9.
[12] SCHMIDT U, ELSTNER C, MICHEL K. ASTRO 15 Star Tracker Flight Experience and Further Improvements towards the ASTRO APS Star Tracker[C]. AIAA Guidance, Navigation and Control Conference and Exhibit. 2008.
[13] AVANESOV G A , KRASIKOV V A , NIKITIN A V , et al. Accuracy estimation for determining the orientation parameters of the coordinate system of the BOKZ-M astromeasuring device by the experimental data[J]. Cosmic Research, 2015, 53(4): 272-285.
[14] KRUZHILOV I S, KUNIAEV V V, FEDOSEEV V I, et al. Flight experience of 329K star tracker[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2013, 8889: 20.
[15] BLARRE L, OUAKNINE J, ODDOSMARCEL L, et al. High Accuracy Sodern Star Trackers: Recent Improvements Proposed on SED36 and HYDRA Star Trackers[C]. Aiaa Guidance, Navigation, & Control Conference & Exhibit. 2006.
[16] 唐新明, 王鸿燕, 祝小勇. 资源三号卫星测绘技术与应用[J]. 测绘学报, 2017(10): 284-293.
[17] POSTYLYAKOV O V, BOROVSKI A N, MAKARENKOV A A. First experiment on retrieval of tropospheric NO2 over polluted areas with 2. 4-km spatial resolution basing on satellite spectral measurements[C]. XXIII International Symposium. 2017.
[18] IVAN V. SERGIENKO. Methods of Optimization and Systems Analysis for Problems of Transcomputational Complexity[M]. New York: Springer Optimization and Its Applications. 2012.
[19] U. SCHMIDT, T. FIKSELA, KWIATKOWSKI, et al. Autonomous star sensor ASTRO APS: flight experience on Alphasat[J]. CEAS Space Journal, 2015, 7(2): 237-246.
[20] LIEBE C C, ALKALAI L, DOMINGO G, et al. Micro APS based star tracker[C]. Aerospace Conference. IEEE, 2002.
[21] BOLDRINI F, PROCOPIO D, AIRY S P, et al. Miniaturised star tracker (AA-STR) ready to fly[J]. Proceedings of Thes Symposium Small Satellites, 2004, 571: 46.
[22] 李杰. APS星敏感器关键技术的研究[J]. 2005.
[23] MORTARI, D. , AND JUNKINS, J. L. .SP-Search Star Pattern Recognition for Multiple Fields of View Star Trackers [J]. Advances in the Astronautical Sciences, 2000, 103(III): 2127-2143.
[24] BLARRE L.New Sodern’s APS Based Autonomous Multiple Heads Star Sensor(HYDRA): Three Heads Are Better Than One Guidance[J], Navigation and Control Systems, 2006.
[25] MURALIDHARA K R , ASHRITA M S , ARPANA A , et al. High speed autonomous embedded software for high accuracy star sensors[C]. Advanced Electronic Systems (ICAES), 2013 International Conference on. IEEE, 2013.
[26] 翟羽婧, 杨开勇, 潘瑶等. 陀螺仪的历史、现状与展望[J]. 飞航导弹, 2018, 408(12): 92-96.
[27] 杨建强. 四频差动激光陀螺相关技术研究[D]. 国防科学技术大学, 2010.
[28] BLUMENTHAL D J. Chip-scale optical gyros based on integrated ultra-low loss waveguide coils and silicon photonic front ends[C]. 2016 IEEE Photonics Conference (IPC). IEEE, 2016.
[29] 李光耀, 侯宏录, 杜鹃等. 采用小波降噪和神经网络的FOG温度漂移补偿方法[J]. 光电工程, 2019, 46(9).
[30] 刘院省, 阚宝玺, 石猛等. 原子陀螺仪技术研究进展[C]. 第四届航天电子战略研究论坛. 2018.
[31] 胡堃, 黄旭, 张永军等. 基于高频角位移数据的卫星平台颤振检测与影像几何质量补偿[J]. 电子与信息学报, 2018, 40(07): 6-12.
[32] 李洪宇, 徐亚东, 吴腾飞等. MHD角速度传感器随机漂移误差补偿方法研究[J]. 传感技术学报, 2017(08): 59-64.
[33] 霍红庆, 马勉军, 李云鹏等. 卫星微角颤振高精度测量技术[J]. 传感器与微系统, 2011, 30(3): 4-6.
[34] IWATA T. Precision attitude and position determination for the Advanced Land Ob-serving Satellite (ALOS) [C]. Enabling Sensor & Platform Technologies for Spaceborne Remote Sensing. International Society for Optics and Photonics, 2005.
[35] 霍红庆, 马勉军, 李云鹏等. MHD角速度传感器在航天任务中的应用[J]. 真空与低温, 2011(02): 57-63.
[36] 胡堃, 黄旭, 张永军等. 基于角位移数据的卫星平台高频颤振检测补偿与质量评价[C]. 第四届高分辨率对地观测学术年会论文集. 2017.
[37] BLACK H D. A passive system for determining the attitude of a satellite [J]. AIAA Journal, 1963, 2(7): 14.
[38] MARKLEY F L, CRASSIDIS J L. Fundamentals of Spacecraft Attitude Determination and Control [M]. Springer New York, 2014.
[39] SAHAY D, VILLODI N, SANDYA S. Development, testing and selection of attitude determination algorithm for STUDSAT-2[C]. Aerospace Conference. IEEE, 2017.
[40] CILDEN D, CONGUROGLU E S, HAJIYEV C. Covariance analysis of three-axis attitude determination using two vector measurements[C]. 2015 7th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2015.
[41] L. M. RYZHKOV. Algorithm of attitude determination using vectors measurements[C]. 2016 4th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC). IEEE, 2016.
[42] GIOIA C J, CHRISTIAN J A. Gyro Bias Estimation Using Interior Star Angles for Manual Attitude Determination [J]. Journal of Spacecraft and Rockets, 2017, 54(2): 513-522.
[43] BOWEN, ZHANGMING, HAIYIN, et al. Integrated Design and Accuracy Analysis of Star Sensor and Gyro on the Same Benchmark for Satellite Attitude Determination System [J]. IEEE/CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6(4): 1074-1080.
[44] JIAO Y, WANG J, ZHOU H. Influence analysis of sensors' measurement datum error on satellite attitude determination accuracy[C]. System Science, Engineering Design and Manufacturing Informatization (ICSEM), 2011 International Conference on. IEEE, 2011.
[45] 秦永元, 张洪钺, 王叔华. 卡尔曼滤波与组合导航原理[M]. 西北工业大学出版社, 2012.
[46] HAJIYEV C, CONGUROGLU E S. Integration of algebraic method and EKF for attitude determination of small information satellites[C]. 2015 7th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2015.
[47] YOU L, ZHAOWEI S, DONG Y. An attitude determination algorithm for fast maneuver satellites[C]. 2014 International Conference on Mechatronics and Control (ICMC). IEEE, 2014.
[48] KALMAN R E. A New Approach to Linear Filtering and Prediction Problems [J]. Transactions of the ASME-Journal of Basic Engineering, 1960.
[49] JI X, GAO L, LIU Z, et al. Spacecraft autonomous navigation system based on SINS/Ultraviolet sensor/Star sensor[C]. Guidance, Navigation & Control Conference. IEEE, 2017.
[50] GUO C, TONG X, LIU S, et al. HIGH-PRECISION ATTITUDE ESTIMATION METHOD OF STAR SENSORS AND GYRO BASED ON COMPLEMENTARY FILTER AND UNSCENTED KALMAN FILTER[J]. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, XLII-3/W1: 49-53.
[51] RISFIC B, ARULAMPALAM S, GORDON N. Beyond the kalman filter - Book Review[J]. 2004, 19(7): 37-38.
[52] ZHIRU F, JING Y. A Research of Gyro/Star-Sensor Integrated Attitude Determination Based on Particle Filter[C]. Third International Conference on Instrumentation. IEEE, 2014.
[53] XINMING T, JUNFENG X, XIAO W, et al. High-Precision Attitude Post-Processing and Initial Verification for the ZY-3 Satellite[J]. Remote Sensing, 2014, 7(1): 111-134.
[54] LI Y, WEI H, WU M, et al. GNSS-Based Attitude Determination via Schmidt Kalman Filter [J]. 2018.
[55] 李贤. 容积卡尔曼滤波方法及其应用研究[D]. 河南大学, 2016.
[56] IWATA T. Precision attitude and position determination for the Advanced Land Observing Satellite (ALOS) [C]. Enabling Sensor & Platform Technologies for Spaceborne Remote Sensing. International Society for Optics and Photonics, 2005.
[57] OKASHA M, NEWMAN B. Guidance, Navigation and Control for Satellite Prox-imity Operations using Tschauner-Hempel Equations [J]. The Journal of the Astro-nautical Sciences, 2013, 60(1): 109-136.
[58] 许斌, 雷斌, 范城城等. 基于高频角位移的高分光学卫星影像内部误差补偿方法[J]. 光学学报, 2016, 36(9).
[59] 陈俊勇. 中国现代大地基准——中国大地坐标系统2000(CGCS 2000)及其框架[J]. 测绘学报, 2008(3): 5-7.
[60] BAR-ITZHACK, I. Y. Extension of Euler"s theorem to n-dimensional spaces[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(6): 903-909.
[61] 苗继松, 邵琼玲, 任元. 基于三元角的坐标旋转变换方法[J]. 北京航空航天大学学报, 2017, 43(12): 2539-2546.
[62] MARKLEY F L, CHENG Y, CRASSIDIS J L, et al. Averaging Quaternions [J]. Journal of Guidance, Control, and Dynamics, 2007, 30(4): 1193-1197.
[63] JAN MOCHNAC, STANISLAV MARCHEVSKY, Pavol Kocan. Bayesian filtering techniques: Kalman and extended Kalman filter basics[C]. 2009 19th International Conference Radioelektronika. IEEE, 2009.
[64] 高桦, 马万宇.基于扩展卡尔曼滤波的卫星组合姿态确定物理仿真技术研究[J].计算机测量与控制, 2014, 22(5): 1629-1631.
[65] WU X T, YANG Y, GAO W, et al. Attitude error compensation technology for inertial platform of airborne gravimeter based on RTS smoothing algorithm[C]. 2017 24th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). IEEE, 2017.
[66] ECSSSECRETARIAT. Stars sensors terminology and performance specification: ECSS-E-ST-60-20C [S]. Noordwijk: ESA, 2008.
[67] PRAVATI NAYAK, JYOTI MANJARY PATTNAIK, SUSHMITA SAMANTARAY, et al. Comparative study of harmonics estimation in micro grid using adaptive extended Kalman filter[C]. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE, 2016.
[68] HUANG G B, WANG D H, LAN Y. Extreme learning machines: a survey [J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122.
[69] CAMBRIA E, HUANG GB. Extreme learning machines. IEEE Intell. Syst, 2013, 28 (6): 2–31.
[70] WEI F, YONG L. Accuracy Analysis of Sigma-Point Kalman Filters[C]. International Conference on Chinese Control & Decision Conference. IEEE Press, 2009.
[71] HU S Q, JING Z L. Overview of particle filter algorithm [J]. Control and Decision, 2005.
[72] 吴昊, 孙晓燕, 郭玉堂等. 保持粒子多样性的非退化粒子滤波方法研究[J]. 电子学报, 2016, 44(7): 1734-1741.
[73] 冯驰, 王萌, 汲清波. 粒子滤波器重采样算法的分析与比较[J]. 系统仿真学报, 2009(4): 182-186+191.
[74] YABO XU, KE XU, JIANWEI WAN, et al. Research on Particle Filter Tracking Method Based on Kalman Filter[C]. 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 2018.
中图分类号:

 P23    

馆藏号:

 47571    

开放日期:

 2020-12-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式