- 无标题文档
查看论文信息

中文题名:

 负载Au NPs的CNFs电极材料的制备及肿瘤标志物检测    

姓名:

 李潇潇    

学号:

 20141213387    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位:

 材料与化工硕士    

学校:

 西安电子科技大学    

院系:

 先进材料与纳米科技学院    

专业:

 材料与化工    

研究方向:

 肿瘤标志物检测    

第一导师姓名:

 王琦    

第一导师单位:

 西安电子科技大学    

第二导师姓名:

 王磊    

完成日期:

 2023-05-01    

答辩日期:

 2023-05-26    

外文题名:

 The preparation of CNFs electrode material loaded with Au NPs and the detection of tumor markers    

中文关键词:

 有机电化学晶体管传感器 ; PD-L1外泌体 ; Au@CNFs ; 癌症检测    

外文关键词:

 Organic electrochemical transistor sensor ; PD-L1 exosomes ; Au@CNFs ; Cancer detection    

中文摘要:

癌症是世界上对人类生命安全健康威胁最大的因素之一,目前全球癌症患者的人数每年都在增加,根据世界卫生组织-国际癌症研究机构发布的数据,仅在2021年,全球就有多达1929万新的癌症病例,包括996万死亡病例。目前,癌症的检测大多依靠医院的各种检查,不仅费用高,耗时长,而且给癌症患者的治疗增加了许多困难。因此,迫切需要一种价格低廉、响应度高的肿瘤标志物检测装置。

有机电化学晶体管(Organic Electrochemical Transistors,OECT)具有电解质门控(与生物环境紧密接触)和在水溶液中具有良好的稳定性等特点,因此其特别适合在活体内操作。OECT在生物疾病监测等方面得到了广泛应用,包括电生理记录、神经元刺激、肿瘤疾病检测等。

本课题通过静电纺丝技术和原位热还原法制备了负载金纳米颗粒的碳纳米纤维(Au@CNFs)。通过Au-S键对其进行生物特异性修饰,在Au@CNFs表面形成一层生物自组装单层,将其用作OECT的栅极,对癌症患者所分泌的程序性死亡配体1(Programmed cell death Ligand 1, PD-L1)外泌体进行特异性检测,以此作为本课题的主要创新点。主要工作内容如下:

(1) 本文基于有机电化学晶体管技术,以聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)为导电沟道,首先采用蒸镀工艺制备不同沟道宽长比器件,讨论沟道宽长比对器件响应度、跨导、开启时间的影响。后续探究了栅极材料对OECT性能的影响,栅极分别为:传统的铂电极和通过静电纺丝和原位热还原技术制备得到的负载金纳米颗粒的碳纳米纤维(Au@CNFs)。以选出更为优良的栅极材料为后续的肿瘤标志物传感器的搭建创造基础。

(2) 本文对负载金纳米颗粒的碳纳米纤维(Au@CNFs)进行表面形貌、化学结构和电化学性能表征。首先采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)对Au@CNFs表面形貌进行表征;通过激光共聚焦显微拉曼光谱仪、傅里叶变换红外光谱仪(FTIR),X射线衍射光谱仪(XRD)对Au@CNFs的化学结构进行了表征。采用四探针及将Au@CNFs制备成类叉指电极,对其电化学性能进行表征。实验结果表明Au@CNFs具有较大的比表面积、良好的导电性、优异的电化学性能,其表面的金纳米颗粒具有良好的生物活性,为后续肿瘤标志物检测奠定良好的基础。

(3) 本文通过PD-L1功能化OECT实现对肿瘤标志物—PD-L1外泌体的特异性检测。采用蒸镀工艺制备OECT的源漏电极,以静电纺丝和原位热还原法合成的Au@CNFs作为OECT的栅极。通过生物自组装法(SAM)对Au@CNFs进行生物特异性修饰,实现对人体肿瘤细胞分泌的PD-L1外泌体特异性检测。首先,通过TEM、能谱仪(EDS)对修饰后的Au@CNFs进行微观表征;采用循环伏安曲线(CV)对修饰前后的Au@CNFs的导电性能进行了表征。通过实验证明经过功能化修饰的OECT其对PD-L1外泌体的检测限度低至10 pg/mL,对不同浓度的PD-L1外泌体有良好的区分度。

(4) 本文通过蒸镀金电极和电化学沉积金电极作为OECT的栅极,来对比三种材料对PD-L1外泌体检测响应度的影响。采用相同方式对三种电极进行生物修饰,通过实验证明采用静电纺丝和原位热还原法合成的Au@CNFs在水溶液中的稳定性和响应度均优于另外两种电极。本文对PD-L1功能化OECT的抗干扰性能进行了测试。测试了体液中常见的葡萄糖、尿酸、抗坏血酸等干扰物质。最后对人体细胞分泌出的PD-L1阳性样本(A549)和PD-L1阴性样本(L929)临床样本进行测试,研究结果表明该生物传感器对外泌体阳性/阴性样本具有优异的区分度。表明本研究制备的PD-L1功能化OECT生物传感器具有优异的选择性及抗干扰能力,具有一定的临床应用前景。

外文摘要:

Cancer is one of the greatest threats to the safety and health of human life around the world and the number of cancer patients worldwide is increasing every year, according to data released by the World Health Organisation-International Agency for Research on Cancer, in 2021 In 2021 only, there were as many as 19.29 million new cancer cases worldwide, including 9.96 million deaths. At present, most cancer detection is based on various examinations in hospitals, which is not only expensive and time-consuming, but also adds many difficulties to the treatment of cancer patients. Therefore, there is an urgent need for an inexpensive and highly sensitive cancer marker detection device.

 

Organic electrochemical transistors (OECT) are particularly suitable for in vivo operation due to their electrolytic gating (close contact with the biological environment) and good stability in aqueous solutions. OECT has been widely used in the monitoring of biological diseases, including electrophysiological recording, neuronal stimulation, detection of tumour diseases and more.

 

In this study, carbon nanofibres (Au@CNFs) loaded with gold nanoparticles were prepared by electrospinning and in situ thermal reduction technology. It is biologically modified by Au-S bonds, forming a bio-assembled monolayer on the surface of the Au@CNFs, which is used as a carrier of OECT to specifically detect exosomes of programmed cell death ligand 1 (PD-L1) secreted by cancer patients, as the main innovation of this project. The main work contents are as follows:

 

(1) Based on organic electrochemical transistor technology, Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) was used as the conductive channel. Source-drain electrodes with different channel width-to-length ratios were first prepared by vapor deposition to discuss the influence of channel width-to-length ratio on device response sensitivity, transconductance, and turn-on time. The influence of the gate electrode material on the OECT performance was then explored. The gate electrodes were platinum electrodes and Au@CNFs prepared by electrostatic spinning and in-situ thermal reduction technology. The selection of improved gate materials is used to create the basis for the subsequent construction of tumour marker sensors.

 

(2) The surface morphology, chemical structure, and electrical properties of Au@CNFs loaded with gold nanoparticles were characterized. The surface morphology of Au@CNFs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of Au@CNFs was characterized by laser confocal Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction spectroscopy (XRD). The electrochemical properties of Au@CNFs were further characterized by ResMap Four Point Probe and the prepared similar interdigital electrode. The results show that Au@CNFs have a large specific surface area, good conductivity, and

excellent electrochemical performance, the gold nanoparticles on the surface with good bioactivity, providing a good foundation for subsequent biological specificity detection.

 

(3) In this thesis, PD-L1 functionalised OECT was used to achieve specific detection of PD-L1 exosomes, a tumour marker. The source-drain electrode of OECT was prepared by vapour deposition process, and Au@CNFs synthesized by electrostatic spinning and in situ thermal reduction were used as the gate of OECT. The Au@CNFs were biospecifically modified by biological self-assembly to enable specific detection of PD-L1 exosomes secreted by human tumour cells. Firstly, the modified Au@CNFs were microscopically characterised by TEM, EDS; the conductivity of the Au@CNFs before and after modification was characterised using CV. It was demonstrated that the functionally modified OECT had a low detection limit of 10 pg/mL for PD-L1 exosomes and good discrimination between different concentrations of PD-L1 exosomes.

 

(4) Subsequently, the influence of the three materials on the sensitivity of PD-L1 exosome detection was compared by vapor-deposited gold electrodes and electrochemically deposited gold electrodes as the gate of OECT. The same method was used for bio-modification of the three electrodes, and the stability and sensitivity of Au@CNFs synthesized by electrostatic spinning and in situ thermal reduction were experimentally demonstrated to be superior to the other two electrodes in aqueous solution. In this study, the anti-interference performance of PD-L1 functionalised OECT was tested. Interfering substances such as glucose, uric acid and ascorbic acid, which are commonly found in body fluids, were tested. Finally, clinical sample testing was carried out on PD-L1-positive samples (A549) and PD-L1-negative samples (L929) secreted by human tumour cells, the results showed that the biosensor has excellent discrimination between exosome-positive/negative samples. The experimental results show that the biosensor prepared in this experiment has good selectivity and anti-interference ability, laying the foundation for future applications in tumour disease detection.

参考文献:
[1] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023 [J]. CA:A Cancer Journal for Clinicians, 2023, 73(1): 17-48.
[2] LANG X Y, FU H Y, HOU C, et al. Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors [J]. Natuer Communications, 2013, 4(1): 2169.
[3] LIN P, YAN F. Organic thin-film transistors for chemical and biological sensing [J]. Advanced Materials, 2012, 24(1): 34-51.
[4] MARICHY C, BECHELANY M, PINNA N. Atomic layer deposition of nanostructured materials for energy and environmental applications [J]. Advanced Materials, 2012, 24(8): 1017-1032.
[5] WANG Y, YAN B, CHEN L. SERS tags: novel optical nanoprobes for bioanalysis [J]. Chemical Reviews, 2013, 113(3): 1391-1428.
[6] CELLA L N, CHEN W, MYUNG N V, et al. Single-walled carbon nanotube-based chemiresistive affinity biosensors for small molecules: ultrasensitive glucose detection [J]. Journal of the American Chemical Society, 2010, 132(14): 5024-5026.
[7] FENG X-M, LI R-M, MA Y-W, et al. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications [J]. Advanced Functional Materials, 2011, 21(15): 2989-2996.
[8] JIN Y. Engineering plasmonic gold nanostructures and metamaterials for biosensing and nanomedicine [J]. Advanced Materials, 2012, 24(38): 5153-5165.
[9] MYUNG S, SOLANKI A, KIM C, et al. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers [J]. Advanced Materials, 2011, 23(19): 2221-2225.
[10] CHEN R J, CHOI H C, BANGSARUNTIP S, et al. An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices [J]. Journal of the American Chemical Society, 2004, 126(5): 1563-1568.
[11] XIANG Y, LU Y. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets [J]. Nature Chemistry, 2011, 3(9): 697-703.
[12] RONKAINEN N J, HALSALL H B, HEINEMAN W R. Electrochemical biosensors [J]. Chemical Society Reviews, 2010, 39(5): 1747-1763.
[13] MAO S, LU G, YU K, et al. Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates [J]. Advanced Materials, 2010, 22(32): 3521-3526.
[14] LA TORRE A, GIMENEZ-LOPEZ M D C, FAY M W, et al. Assembly, growth, and catalytic activity of gold nanoparticles in hollow carbon nanofibers [J]. ACS Nano, 2012, 6(3): 2000-2007.
[15] BOISSELIER E, ASTRUC D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity [J]. Chemical Society Reviews, 2009, 38(6).
[16] JAZAYERI M H, AMANI H, POURFATOLLAH A A, et al. Various methods of gold nanoparticles (GNPs) conjugation to antibodies [J]. Sensing and Bio-Sensing Research, 2016, 9: 17-22.
[17] DRAZ M S, SHAFIEE H. Applications of gold nanoparticles in virus detection [J]. Theranostics, 2018, 8(7): 1985-2017.
[18] ALEX S, TIWARI A. Functionalized gold nanoparticles: synthesis, properties and applications—a review [J]. Journal of Nanoscience and Nanotechnology, 2015, 15(3): 1869-1894.
[19] HERMES J, LEUSCHNER C. Nanofabrication towards biomedical applications [M]. John Wiley & Sons: Hoboken, NJ, USA, 2005.
[20] LI Y, KHAN M S, TIAN L, et al. An ultrasensitive electrochemical immunosensor for the detection of prostate-specific antigen based on conductivity nanocomposite with halloysite nanotubes [J]. Analytical and Bioanalytical Chemistry, 2017, 409(12): 3245-3251.
[21] 祁建荣. 用于生物分子检测的有机电化学传感器研究 [D]; 上海交通大学, 2019.
[22] OGOREVC E, KRALJ-IGLIC V, VERANIC P. The role of extracellular vesicles in phenotypic cancer transformation [J]. Radiology and Oncology, 2013, 47(3): 197-205.
[23] KAHLERT C, KALLURI R. Exosomes in tumor microenvironment influence cancer progression and metastasis [J]. Journal of Molecular Medicine-Jmm, 2013, 91(4): 431-437.
[24] DORAYAPPAN K D P, WALLBILLICH J J, COHN D E, et al. The biological significance and clinical applications of exosomes in ovarian cancer [J]. Gynecologic Oncology, 2016, 142(1): 199-205.
[25] TRAN T H, MATTHEOLABAKIS G, ALDAWSARI H, et al. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases [J]. Clinical Immunology, 2015, 160(1): 46-58.
[26] TANG M K, WONG A S. Exosomes: emerging biomarkers and targets for ovarian cancer [J]. Cancer Letts, 2015, 367(1): 26-33.
[27] AL-NEDAWI K, MEEHAN B, KERBEL R S, et al. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR [J]. Proceedings of the National Academy of Sciences, 2009, 106(10): 3794-3799.
[28] SUNG B H, KETOVA T, HOSHINO D, et al. Directional cell movement through tissues is controlled by exosome secretion [J]. Nature Communications, 2015, 6(1): 7164.
[29] PEINADO H, ALECKOVIC M, LAVOTSHKIN S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET [J]. Nature Medicine, 2012, 18(6): 883-891.
[30] VALENZUELA M M, FERGUSON BENNIT H R, GONDA A, et al. Exosomes secreted from human cancer cell lines contain inhibitors of apoptosis (IAP) [J]. Cancer Microenviron, 2015, 8(2): 65-73.
[31] BOLAND J M, KWON E D, HARRINGTON S M, et al. Tumor B7-H1 and B7-H3 expression in squamous cell carcinoma of the lung [J]. Clin Lung Cancer, 2013, 14(2): 157-163.
[32] RIBAS A, HU-LIESKOVAN S. What does PD-L1 positive or negative mean? [J]. Journal of Experimental Medicine, 2016, 213(13): 2835-2840.
[33] CHENG S, ZHENG J, ZHU J, et al. PD-L1 gene polymorphism and high level of plasma soluble PD-L1 protein may be associated with non-small cell lung cancer [J]. International Journal Of Biological Markers, 2015, 30(4): 364-368.
[34] PHILLIPS T, SIMMONS P, INZUNZA H D, et al. Development of an automated PD-L1 immunohistochemistry (IHC) assay for non–small cell lung cancer [J]. Applied Immunohistochemistry & Molecular Morphology, 2015, 23(8): 541.
[35] WU Y, CHEN M, WU P, et al. Increased PD-L1 expression in breast and colon cancer stem cells [J]. Clinical and Experimental Pharmacology and Physiology, 2017, 44(5): 602-604.
[36] TOPALIAN S L, HODI F S, BRAHMER J R, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer [J]. New England Journal of Medicine, 2012, 366(26): 2443-2454.
[37] HERBST R S, SORIA J-C, KOWANETZ M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients [J]. Nature, 2014, 515(7528): 563-567.
[38] NAWAZ A, LIU Q, LEONG W L, et al. Organic electrochemical transistors for in vivo bioelectronics [J]. Advanced Materials, 2021, 33(49): 2101874.
[39] YASEEN H S, ASIF M, SAADULLAH M, et al. Methanolic extract of ephedra ciliata promotes wound healing and arrests inflammatory cascade in vivo through downregulation of TNF-α [J]. Inflammopharmacology, 2020, 28: 1691-1704.
[40] BERTOK T, PINKOVA GAJDOSOVA V, BERTOKOVA A, et al. Breast cancer glycan biomarkers: their link to tumour cell metabolism and their perspectives in clinical practice [J]. Expert Review of Proteomics, 2021, 18(10): 881-910.
[41] WHITE H S, KITTLESEN G P, WRIGHTON M S. Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor [J]. Journal of the American Chemical Society, 1984, 106(18): 5375-5377.
[42] KIM S H, HONG K, XIE W, et al. Electrolyte-gated transistors for organic and printed electronics [J]. Advanced Materials, 2013, 25(13): 1822-1846.
[43] RIVNAY J, INAL S, SALLEO A, et al. Organic electrochemical transistors [J]. Nature Reviews Materials, 2018, 3(2):1-14.
[44] LAIHO A, HERLOGSSON L, FORCHHEIMER R, et al. Controlling the dimensionality of charge transport in organic thin-film transistors [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37): 15069-15073.
[45] HERLOGSSON L, CRISPIN X, ROBINSON N D, et al. Low-voltage polymer field-effect transistors gated via a proton conductor [J]. Advanced Materials, 2007, 19(1): 97-101.
[46] GIOVANNITTI A, SBIRCEA D T, INAL S, et al. Controlling the mode of operation of organic transistors through side-chain engineering [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): 12017-12022.
[47] BERNARDS D A, MALLIARAS G G. Steady-state and transient behavior of organic electrochemical transistors [J]. Advanced Functional Materials, 2007, 17(17): 3538-3544.
[48] MORVANT M C, REYNOLDS J R. In situ conductivity studies of poly (3, 4-ethylenedioxythiophene) [J]. Synthetic Metals, 1998, 92(1): 57-61.
[49] CARLBERG J, INGANäS O. Poly (3, 4‐ethylenedioxythiophene) as electrode material in electrochemical capacitors [J]. Journal of the Electrochemical Society, 1997, 144(4): L61.
[50] CARLBERG J, INGANäS O. Fast optical spectroscopy of the electrochemical doping of poly (3, 4‐ethylenedioxythiophene) [J]. Journal of The Electrochemical Society, 1998, 145(11): 3810.
[51] WINTER I, REESE C, HORMES J, et al. The thermal ageing of poly (3, 4-ethylenedioxythiophene). An investigation by X-ray absorption and X-ray photoelectron spectroscopy [J]. Chemical Physics, 1995, 194(1): 207-213.
[52] JONAS F, KRAFFT W, MUYS B. Poly(3, 4-ethylenedioxythiophene): conductive coatings, technical applications and properties [J]. Macromolecular Symposia, 1995, 100(1): 169-173.
[53] REYES-REYES M, CRUZ-CRUZ I, LóPEZ-SANDOVAL R. Enhancement of the electrical conductivity in PEDOT: PSS films by the addition of dimethyl sulfate [J]. The Journal of Physical Chemistry C, 2010, 114(47): 20220-20224.
[54] SHI H, LIU C, JIANG Q, et al. Effective approaches to improve the electrical conductivity of pedot:pss: a review [J]. Advanced Electronic Materials, 2015, 1(4):1500017.
[55] RIVNAY J, INAL S, COLLINS B A, et al. Structural control of mixed ionic and electronic transport in conducting polymers [J]. Nature Communications, 2016, 7(1): 11287.
[56] WANG T, QI Y, XU J, et al. Effects of poly(ethylene glycol) on electrical conductivity of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic acid) film [J]. Applied Surface Science, 2005, 250(1-4): 188-194.
[57] OUYANG L, MUSUMECI C, JAFARI M J, et al. Imaging the phase separation between PEDOT and polyelectrolytes during processing of highly conductive PEDOT:PSS films [J]. ACS Appl Mater Interfaces, 2015, 7(35): 19764-19773.
[58] BAI L, ELOSEGUI C G, LI W, et al. Biological applications of organic electrochemical transistors: electrochemical biosensors and electrophysiology recording [J]. Frontiers In Chemistry, 2019, 7: 313.
[59] TARABELLA G, MAHVASH MOHAMMADI F, COPPEDè N, et al. New opportunities for organic electronics and bioelectronics: ions in action [J]. Chemical Science, 2013, 4(4):1395-1409.
[60] KHODAGHOLY D, RIVNAY J, SESSOLO M, et al. High transconductance organic electrochemical transistors [J]. Nature Communications, 2013, 4(1): 2133.
[61] MANTIONE D, DEL AGUA I, SCHAAFSMA W, et al. Poly(3,4-ethylenedioxythiophene):glycosaminoglycan aqueous dispersions: toward electrically conductive bioactive materials for neural interfaces [J]. Macromolecular Bioscience, 2016, 16(8): 1227-1238.
[62] SIQUEIRA M C, HOFF A, DE COL C, et al. Enhancement of P3HT organic photodiodes by the addition of a GaSe9 alloy thin layer [J]. Semiconductor Science and Technology, 2017, 32(8):085008.
[63] MACHADO W S, HUMMELGEN I A. Low-voltage poly(3-hexylthiophene)/poly(vinyl alcohol) field-effect transistor and inverter [J]. IEEE Transactions on Electron Devices, 2012, 59(5): 1529-1533.
[64] NAWAZ A, KUMAR A, HüMMELGEN I A. Ultra-high mobility in defect-free poly(3-hexylthiophene-2,5-diyl) field-effect transistors through supra-molecular alignment [J]. Organic Electronics, 2017, 51: 94-102.
[65] CHAUDHARY V, PANDEY R K, PRAKASH R, et al. Highly aligned and crystalline poly(3-hexylthiophene) thin films by off-center spin coating for high performance organic field-effect transistors [J]. Synthetic Metals, 2019, 258:116221.
[66] PACHECO-MORENO C M, SCHRECK M, SCACCABAROZZI A D, et al. The importance of materials design to make ions flow: toward novel materials platforms for bioelectronics applications [J]. Advanced Materials, 2017, 29(4):1604446.
[67] FLAGG L Q, BISCHAK C G, ONORATO J W, et al. Polymer crystallinity controls water uptake in glycol side-chain polymer organic electrochemical transistors [J]. Journal of the American Chemical Society, 2019, 141(10): 4345-4354.
[68] GIOVANNITTI A, SBIRCEA D-T, INAL S, et al. Controlling the mode of operation of organic transistors through side-chain engineering [J]. Proceedings of the National Academy of Sciences, 2016, 113(43): 12017-12022.
[69] RIVNAY J, LELEUX P, FERRO M, et al. High-performance transistors for bioelectronics through tuning of channel thickness [J]. Science Advances, 2015, 1(4): e1400251.
[70] FRIEDLEIN J T, MCLEOD R R, RIVNAY J. Device physics of organic electrochemical transistors [J]. Organic Electronics, 2018, 63: 398-414.
[71] KHODAGHOLY D, GURFINKEL M, STAVRINIDOU E, et al. High speed and high density organic electrochemical transistor arrays [J]. Applied Physics Letters, 2011, 99(16):227.
[72] POLYRAVAS A G, CURTO V F, SCHAEFER N, et al. Impact of contact overlap on transconductance and noise in organic electrochemical transistors [J]. Flexible and Printed Electronics, 2019, 4(4):044003.
[73] CHEN S, SURENDRAN A, WU X, et al. Recent technological advances in fabrication and application of organic electrochemical transistors [J]. Advanced Materials Technologies, 2020, 5(12):2000523.
[74] LI J, CHANG X, LI S, et al. High-resolution electrochemical transistors defined by mold-guided drying of PEDOT:PSS liquid suspension [J]. ACS Applied Electronic Materials, 2020, 2(8): 2611-2618.
[75] KHODAGHOLY D, DOUBLET T, QUILICHINI P, et al. In vivo recordings of brain activity using organic transistors [J]. Nature Communications, 2013, 4(1): 1575.
[76] WU X, SURENDRAN A, MOSER M, et al. Universal spray-deposition process for scalable, high-performance, and stable organic electrochemical transistors [J]. ACS Appl Mater Interfaces, 2020, 12(18): 20757-20764.
[77] MANNERBRO R, RANLöF M, ROBINSON N, et al. Inkjet printed electrochemical organic electronics [J]. Synthetic Metals, 2008, 158(13): 556-560.
[78] ROMELE P, GHITTORELLI M, KOVACS-VAJNA Z M, et al. Ion buffering and interface charge enable high performance electronics with organic electrochemical transistors [J]. Nature Communications, 2019, 10(1): 3044.
[79] AFONSO M, MORGADO J, ALCáCER L. Inkjet printed organic electrochemical transistors with highly conducting polymer electrolytes [J]. Journal of Applied Physics, 2016, 120(16):165502.
[80] DONAHUE M J, WILLIAMSON A, STRAKOSAS X, et al. High-performance vertical organic electrochemical transistors [J]. Advanced Materials, 2018, 30(5):1705031.
[81] LIN M-H, CROSS S N N, JONES W J, et al. Applying EEG in consumer neuroscience [J]. European Journal of Marketing, 2018, 52(1/2): 66-91.
[82] REEG W B. Primer of EEG with mini-atlas [J]. The Neurodiagnostic Journal, 2003, 43(3):194.
[83] SCHOMER D L, DA SILVA F L. Niedermeyer's electroencephalography: basic principles, clinical applications, and related fields [M]. Lippincott Williams & Wilkins, 2012.
[84] TYBRANDT K, KOLLIPARA S B, BERGGREN M. Organic electrochemical transistors for signal amplification in fast scan cyclic voltammetry [J]. Sensors and Actuators B: Chemical, 2014, 195: 651-656.
[85] LELEUX P, RIVNAY J, LONJARET T, et al. Organic electrochemical transistors for clinical applications [J]. Advanced Healthcare Materials, 2015, 4(1): 142-147.
[86] WILLIAMSON A, FERRO M, LELEUX P, et al. Localized neuron stimulation with organic electrochemical transistors on delaminating depth probes [J]. Advanced Materials, 2015, 27(30): 4405-4410.
[87] BARTHó P, HIRASE H, MONCONDUIT L, et al. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features [J]. Journal of Neurophysiology, 2004, 92(1): 600-608.
[88] HENZE D A, BORHEGYI Z, CSICSVARI J, et al. Intracellular features predicted by extracellular recordings in the hippocampus in vivo [J]. Journal of Neurophysiology, 2000, 84(1): 390-400.
[89] LIND G, LINSMEIER C E, SCHOUENBORG J. The density difference between tissue and neural probes is a key factor for glial scarring [J]. Scientific Reports, 2013, 3(1): 1-7.
[90] RAVEN P H, EVERT R F, EICHHORN S E. Biology of plants [M]. Macmillan, 2005.
[91] BUCHANAN B B, GRUISSEM W, JONES R L. Biochemistry and molecular biology of plants [M]. John Wiley & Sons, 2015.
[92] DJIKANOVIC D, KALAUZI A, JEREMIC M, et al. Interaction of the CdSe quantum dots with plant cell walls [J]. Colloids Surf B Biointerfaces, 2012, 91: 41-47.
[93] MASAROVIČOVá E, KRáĽOVá K. Metal nanoparticles and plants / nanocząstki metaliczne i rośliny [J]. Ecological Chemistry and Engineering S, 2013, 20(1): 9-22.
[94] GIRALDO J P, LANDRY M P, FALTERMEIER S M, et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing [J]. Nature Materials, 2014, 13(4): 400-408.
[95] HUSSAIN H I, YI Z, ROOKES J E, et al. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants [J]. Journal of Nanoparticle Research, 2013, 15:1-15.
[96] STAVRINIDOU E, GABRIELSSON R, GOMEZ E, et al. Electronic plants [J]. Science Advances, 2015, 1(10): 1501136.
[97] STRAKOSAS X, BONGO M, OWENS R M. The organic electrochemical transistor for biological applications [J]. Journal of Applied Polymer Science, 2015, 132(15).
[98] COPPEDE N, JANNI M, BETTELLI M, et al. An in vivo biosensing, biomimetic electrochemical transistor with applications in plant science and precision farming [J]. Scientific Reports, 2017, 7(1): 16195.
[99] BISCHAK C G, FLAGG L Q, GINGER D S. Ion exchange gels allow organic electrochemical transistor operation with hydrophobic polymers in aqueous solution [J]. Advanced Materials, 2020, 32(32): 2002610.
[100] GUO K, WUSTONI S, KOKLU A, et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors [J]. Nature Biomedical Engineering, 2021, 5(7): 666-677.
[101] WANG W U, CHEN C, LIN K-H, et al. Label-free detection of small-molecule–protein interactions by using nanowire nanosensors [J]. Proceedings of the National Academy of Sciences, 2005, 102(9): 3208-3212.
[102] MACCHIA E, MANOLI K, HOLZER B, et al. Single-molecule detection with a millimetre-sized transistor [J]. Nature Communications, 2018, 9(1): 3223.
[103] KHODAGHOLY D, RIVNAY J, SESSOLO M, et al. High transconductance organic electrochemical transistors [J]. Nature Communications, 2013, 4(1): 2133.
[104] OHAYON D, INAL S. Organic bioelectronics: from functional materials to next‐generation devices and power sources [J]. Advanced Materials, 2020, 32(36): 2001439.
[105] KOEHLER M, SEIDEL K F. Transition from bulk transport to surface transport in organic field effect transistors [J]. Physical Review B, 2010, 81(8): 085305.
[106] JASTROMBEK D, NAWAZ A, KOEHLER M, et al. Modification of the charge transport properties of the copper phthalocyanine/poly (vinyl alcohol) interface using cationic or anionic surfactant for field-effect transistor performance enhancement [J]. Journal of Physics D: Applied Physics, 2015, 48(33): 335104.
[107] NAWAZ A, CRUZ-CRUZ I, REGO J S, et al. Polymer-dielectric molecular interactions in defect-free poly (3-hexylthiophene): dependence and consequences of regioregularity on transistor charge transport properties [J]. Semiconductor Science and Technology, 2017, 32(8): 084003.
[108] NILSSON D, ROBINSON N, BERGGREN M, et al. Electrochemical logic circuits [J]. Advanced Materials, 2005, 17(3): 353-358.
[109] GKOUPIDENIS P, SCHAEFER N, GARLAN B, et al. Neuromorphic functions in PEDOT: PSS organic electrochemical transistors [J]. Advanced Materials, 2015, 27(44): 7176-7180.
[110] VAN DE BURGT Y, LUBBERMAN E, FULLER E J, et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing [J]. Nature Materials, 2017, 16(4): 414-418.
[111] MORENS D M, FOLKERS G K, FAUCI A S. The challenge of emerging and re-emerging infectious diseases [J]. Nature, 2004, 430(6996): 242-249.
[112] DYKMAN L, KHLEBTSOV N. Gold nanoparticles in biomedical applications: recent advances and perspectives [J]. Chemical Society Reviews, 2012, 41(6): 2256-2282.
[113] ARVIZO R, BHATTACHARYA R, MUKHERJEE P. Gold nanoparticles: opportunities and challenges in nanomedicine [J]. Expert Opinion on Drug Delivery 2010, 7(6): 753-763.
[114] LIAO H, NEHL C L, HAFNER J H. Biomedical applications of plasmon resonant metal nanoparticles [J]. Expert Opinion on Drug Delivery 2006,
[115] ZENG S, YONG K-T, ROY I, et al. A review on functionalized gold nanoparticles for biosensing applications [J]. Plasmonics, 2011, 6(3): 491-506.
[116] BAASKE M, VOLLMER F. Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform [J]. ChemPhysChem, 2012, 13(2): 427-436.
[117] WANG X, LIU L H, RAMSTROM O, et al. Engineering nanomaterial surfaces for biomedical applications [J]. Experimental Biology and Medicine (Maywood), 2009, 234(10): 1128-1139.
[118] ROSI N L, MIRKIN C A. Nanostructures in biodiagnostics [J]. Chemical Reviews, 2005, 105(4): 1547-1562.
[119] ZEHBE I, HACKER G W, SU H, et al. Sensitive in situ hybridization with catalyzed reporter deposition, streptavidin-nanogold, and silver acetate autometallography: detection of single-copy human papillomavirus [J]. The American Journal of Pathology, 1997, 150(5): 1553.
[120] ALIVISATOS P. The use of nanocrystals in biological detection [J]. Nature Biotechnology, 2004, 22(1): 47-52.
[121] DOUGAN J A, KARLSSON C, SMITH W E, et al. Enhanced oligonucleotide-nanoparticle conjugate stability using thioctic acid modified oligonucleotides [J]. Nucleic Acids Research, 2007, 35(11): 3668-3675.
[122] BARD A J, CRAYSTON J A, KITTLESEN G P, et al. Digital simulation of the measured electrochemical response of reversible redox couples at microelectrode arrays: consequences arising from closely spaced ultramicroelectrodes [J]. Analytical Chemistry, 1986, 58(11): 2321-2331.
[123] SHARPE A H, WHERRY E J, AHMED R, et al. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection [J]. Nature Immunology, 2007, 8(3): 239-245.
[124] OHAEGBULAM K C, ASSAL A, LAZAR-MOLNAR E, et al. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway [J]. Trends in Molecular Medicine, 2015, 21(1): 24-33.
[125] JI M, LIU Y, LI Q, et al. PD-1/PD-L1 pathway in non-small-cell lung cancer and its relation with EGFR mutation [J]. Journal of Translational Medicine, 2015, 13(1):1-6.
[126] ABIKO K, MATSUMURA N, HAMANISHI J, et al. IFN-gamma from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer [J]. British Journal of Cancer, 2015, 112(9): 1501-1509.
[127] DONG P, XIONG Y, YUE J, et al. Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: beyond immune evasion [J]. Frontiers in Oncology, 2018, 8: 386.
[128] NUNES-XAVIER C E, ANGULO J C, PULIDO R, et al. A critical insight into the clinical translation of PD-1/PD-L1 blockade therapy in clear cell renal cell carcinoma [J]. Current Urology Reports, 2019, 20(1): 1-10.
[129] THOMPSON R H, GILLETT M D, CHEVILLE J C, et al. Costimulatory B7-H1 in renal cell carcinoma patients: iIndicator of tumor aggressiveness and potential therapeutic target [J]. Proceedings of the National Academy of Sciences, 2004, 101(49): 17174-17179.
[130] TOPALIAN S L, DRAKE C G, PARDOLL D M. Immune checkpoint blockade: a common denominator approach to cancer therapy [J]. Cancer Cell, 2015, 27(4): 450-461.
[131] HE A, LIU Q, IVEY D. Electroplating of gold from a solution containing tri-ammonium citrate and sodium sulphite [J]. Journal of Materials Science: Materials in Electronics, 2009, 20: 543-550.

中图分类号:

 R730    

开放日期:

 2023-12-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式