- 无标题文档
查看论文信息

中文题名:

 基于空间滤模的显式无条件稳定FDTD方法研究    

姓名:

 赵斯晗    

学号:

 19051110075    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070208    

学科名称:

 理学 - 物理学 - 无线电物理    

学生类型:

 博士    

学位:

 理学博士    

学校:

 西安电子科技大学    

院系:

 物理学院    

专业:

 物理学    

研究方向:

 无线电物理    

第一导师姓名:

 魏兵    

第一导师单位:

 西安电子科技大学    

完成日期:

 2023-09-12    

答辩日期:

 2023-09-10    

外文题名:

 Research on Explicit and Unconditionally Stable FD TD Method Based on Spatial Modes Filtering    

中文关键词:

 时域有限差分 ; 无条件稳定 ; 快速空间滤模 ; 周期结构 ; 柱坐标时域有限差分    

外文关键词:

 FDTD ; unconditionally stable ; fast spatial modes filtering ; periodic structure ; cylindrical FDTD    

中文摘要:

传统时域有限差分(Finite-Difference Time-Domain,FDTD)方法在求解含精细结构目标电磁问题时会受到Courant-Friedrichs-Lewy(CFL)条件的限制使其劣势开始显现。一种基于空间滤模的显式无条件稳定FDTD(Explicit and unconditionally stable FDTD method based on spatial modes filtering, SMF-FDTD)方法能够在保证计算精度的前提下,从根本上消除当时间步长不满足CFL条件时发生的不稳定。SMF-FDTD方法提出这种不稳定是由于数值系统中的高阶模式,也称作不稳定模式导致的,将这些模式从数值系统中去除后就可以得到稳定的仿真结果。然而,这些不稳定模式需通过求解系统矩阵的特征值问题获得,当计算域中未知量数目过多时,求解特征值的开销巨大,严重降低了计算效率,限制了应用场景。此外,该算法目前应用范围也相对较窄,且若将现有的SMF-FDTD方法用于圆柱类目标电磁问题的分析,会产生台阶化误差从而导致计算结果不准确。

本文阐述了SMF-FDTD方法的基本原理框架,在现有SMF-FDTD方法的基础上,针对特征值求解效率低、应用场景较窄以及分析圆柱类目标时计算精度较差等问题给出了对应的解决方法。本文工作主要分为以下四个部分:

(1)发展了局部不稳定模式提取的快速SMF-FDTD方法(Fast SMF-FDTD method for local unstable modes extraction, FSMF-FDTD)。该方法的总体思路是通过降低待求解矩阵维度,从而降低特征值的求解时间。文中定量地分析了特征值与网格尺寸的关系,根据是否包含不稳定模式将计算域分为两个子域,通过求解包含不稳定模式子域对应小矩阵的特征值问题获得所有不稳定模式,达到从局部区域提取全域不稳定模式的目的。文中列出了两个实现FSMF-FDTD方法的关键问题,并给出了解决这两个关键问题的不同实施方案,均能有效提高计算效率。

(2)发展了周期结构SMF-FDTD方法。为了对周期结构进行简化,文中根据Floquet定理,阐述了当入射波垂直入射时将周期边界条件(Periodic Boundary Condition, PBC)引入SMF-FDTD方法的过程。这一过程是通过修改网格矩阵中未知量的耦合关系实现的。之后,文中对周期系统矩阵的特征值求解进行了说明。文中通过分析无限大介质板、耶路撒冷十字频选表面以及光子晶体等典型周期结构的电磁问题,说明了周期SMF-FDTD方法的准确性和高效性。针对光子晶体的特殊排布方式,结合SMF-FDTD方法的自身特点,文中还给出了一种更高效获取不稳定模式的方法。此外,研究了不同形状介质柱的几何参数对光子晶体禁带(photonic band gap, PBG)的影响。这增强了SMF-FDTD方法的工程实用性,扩大了其应用范围。

(3)在原有SMF-FDTD方法的基础上,提出了柱坐标SMF-FDTD(Cylindrical SMF-FDTD, CSMF-FDTD)方法用以快速分析圆柱类结构的电磁问题。文中介绍了传统柱坐标FDTD(Cylindrical FDTD, C-FDTD)方法的理论框架,之后系统地阐述了所提柱坐标SMF-FDTD方法中网格的剖分、系统矩阵的建立等基本理论。由于柱网格尺寸在φ方向上渐变,导致系统矩阵出现了不对称的情况,文中介绍了一种对称化处理方案,保证了所提方法显式中心差分格式的稳定性。为了更好的模拟一些精细的物理结构,文中还讨论了含细网格情形下的CSMF-FDTD方法。与直角坐标系类似,CSMF-FDTD方法也会出现全域特征值计算效率低的问题,本章在第三章基础上发展了快速CSMF-FDTD(Fast CSMF-FDTD for local unstable modes extraction, FCSMF-FDTD)方法,且该方法是一种通用方法。FCSMF-FDTD方法在CSMF-FDTD方法降低迭代时间的基础上,进一步提高了特征值分析的效率。

(4)发展了混合SMF-FDTD与传统FDTD方法。SMF-FDTD方法虽能明显降低显式时间步进的时长,但其代价是需要求解矩阵特征值问题。而传统FDTD方法无需进行矩阵运算,计算效率较高。当区域中没有不稳定模式时,传统FDTD方法和SMF-FDTD方法等价,二者的时间步长均由粗网格尺寸确定。为了最大程度的保留传统方法优点的同时又能实现无条件稳定,采用将SMF-FDTD方法和传统FDTD方法相结合的方式。文中分别介绍了直角坐标系和柱坐标系下的混合方法,说明了算法区域的划分以及场值交互的过程。数值结果说明了该方法的准确性和高效性。

外文摘要:

Traditional finite-difference time-domain (FDTD) method is limited by Courant- Friedrichs-Lewy (CFL) condition when solving electromagnetic problems involving fine structures. The disadvantage of the traditional FDTD method shows up. An explicit and unconditionally stable FDTD method based on spatial modes filtering (SMF-FDTD) can eliminate the instability caused by the time step beyond the CFL condition fundamentally without compromising accuracy. The SMF-FDTD method claims that the instability is caused by a few high-order modes, which are also called unstable modes. By removing these modes from numerical system, a stable simulation result can be obtained. However, these unstable modes are found by solving eigenvalue problem of the system matrix. When there are large number of unknowns in the computational domain, the cost of solving eigenvalue is expensive, reducing the computational efficiency seriously and limits application scenarios. Besides, the range of applications of the existing SMF-FDTD method is relatively narrow. In addition, the step error is caused when analyzing cylindrical structures, which may leads to inaccurate results.

 

This work illustrates the framework of the SMF-FDTD method. Based on the existing SMF-FDTD method, the corresponding solutions are provided to address the issues such as low efficiency in solving eigenvalues, narrow application scenarios, and poor accuracy when analyzing cylindrical structures. This work is mainly divided into the following four parts:

 

(1) A fast SMF-FDTD method for local unstable modes extraction (FSMF-FDTD) is developed. The core of this method is to reduce the size of the system matrix, thereby the time for eigenvalue solution can be reduced. The relationship between the eigenvalues and grid size is quantificationally analyzed, and then the domain can be divided into two subdomains according to whether the unstable modes exist. By solving the eigenvalue problem of the small matrix corresponding to the subdomain contains unstable modes, all unstable modes can be obtained. It achieves obtaining global unstable modes in local area. Two key issues in FSMF-FDTD methods are listed and the corresponding implementations are given, which all improve the calculation efficiency.

 

(2) The SMF-FDTD method for periodic structures is proposed. First, in order to simplify the periodic structure, the periodic boundary condition (PBC) is introduced into SMF-FDTD method based on the Floquet theorem on the condition of vertical incidence of the plane wave. It is achieved by modifying the coupling relationship of unknowns in the grid matrix. Then the way to solve eigenvalues of the periodic system matrix is indicated. The accuracy and efficiency of the periodic SMF-FDTD method are demonstrated by analyzing the electromagnetic problems of several typical periodic structures, such as the infinite dielectric plate, the Jerusalem cross frequency selective surface and photonic crystals. For the special arrangement of photonic crystals, a more efficient way to obtain unstable modes is given. Further, the factors affecting the photonic band gap (PBG) are also discussed. It enhances the engineering practicality of the SMF-FDTD method and expands its application scope.

 

(3) Based on SMF-FDTD method, the cylindrical SMF-FDTD (CSMF-FDTD) method is proposed to analyze electromagnetic problems of cylindrical structures efficiently. Firstly, the framework of the traditional cylindrical FDTD (C-FDTD) method is introduced. Then the grid and the establishment of system matrix in CSMF-FDTD method are systematically elaborated. Due to the grid size in φ axis changes gradually, the system matrix is asymmetric. To ensure the stability of the explicit central difference scheme, a symmetrization scheme is introduced. In order to simulate fine structures, the CSMF-FDTD method involving fine grids is also discussed in this work. Similar to the problem exists in Cartesian coordinate system, the CSMF-FDTD method also suffers from low efficiency in solving global eigenvalues. Thus, a fast CSMF-FDTD (FCSMF-FDTD) method based on Chapter 3 is developed. In addition, it is a general method. The FCSMF-FDTD method not only reduces the iteration time compared to C-FDTD method, but also improves the efficiency of solving eigenvalue problem compared to CSMF-FDTD.

 

(4) A hybrid SMF-FDTD and traditional FDTD method is developed. Although the SMF-FDTD method could reduce the time for explicit time marching, it needs to solve the eigenvalue problem. The traditional FDTD method is a matrix-free method so it has relatively high computational efficiency. When there exists no unstable mode in the domain, the traditional FDTD method and the SMF-FDTD method are equivalent, and the time step are both determined by the size of the coarse grid. In order to preserve the advantages of traditional method while achieving unconditional stability, a combination of SMF-FDTD method and traditional FDTD method is adopted. The hybrid method are introduced in Cartesian and cylindrical coordinate systems. The domain decomposition and the correctness of boundary fields are illustrated. Numerical results demonstrate the accuracy and efficiency of this method.

参考文献:
[1] K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Trans. Antennas and Propagation, May 1966, 14:302-307,.
[2] Silvester P P, Ferrari R L. Finite elements for electrical engineers[M]. Cambridge university press, 1996.
[3] Rao S M, Wilton D R. Transient scattering by conducting surfaces of arbitrary shape[J]. IEEE Transactions on Antennas and Propagation, 2002, 39(1):56-61.
[4] Shankar V, Mohammadian A H, Hall W F. A time-domain finite-volume treatment for the Maxwell equations[J]. Electromagnetics, 1990, 10(1-2): 127-145.
[5] Peaceman, D.W., and Rachford, H.H. Jr. The numerical solution of parabolic and elliptic differential equations[J]. Journal of the Society for Industrial and Applied Mathematics, 1955, 3(1):28–41.
[6] Namiki T. A new FDTD algorithm based on alternating-direction implicit method [J]. IEEE Transactions on Microwave Theory Techniques, 1999, 47(10): 2003-2007.
[7] T. Namiki. 3-D ADI-FDTD method-unconditionally stable time-domain algorithm for solving full vector Maxwell's equations[J]. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(10) :1743-1748.
[8] Namiki T, Ito K. Investigation of numerical errors of the two-dimensional ADI-FDTD method [for Maxwell's equations solution] [J]. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(11): 1950-1956.
[9] G. S. Liu, G. J. Zhang and B. J. Hu. An improved adi-fdtd method with lower splitting error[C] 2008 12th International Conference on Mathematical Methods in Electromagnetic Theory, Odessa, 2008, UKraine, c2008: 401-403.
[10] Hong-Xing Zheng and Kwok Wa Leung. An efficient method to reduce the numerical dispersion in the ADI-FDTD. IEEE Transactions on Microwave Theory and Techniques[J], July 2005, 53(7):2295-2301.
[11] Sun G, Trueman C W. A simple method to determine the time-step size to achieve a desired dispersion accuracy in ADI-FDTD[J]. Microwave and Optical Technology Letters, 2004, 40(6): 487-490.
[12] Tan E L, Heh D Y. ADI-FDTD method with fourth order accuracy in time[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(5): 296-298.
[13] M. K. Sun and W. Y. Tam. Low numerical dispersion two-dimensional (2,4) ADI-FDTD method[J]. IEEE Transactions on Antennas and Propagation, March 2006, 54(3):1041-1044.
[14] Cooke S J, Botton M, Antonsen T M, et al. A Leapfrog Formulation of the 3D ADI-FDTD Algorithm[C]// Perugia, Italy, 2007, Workshop on Computational Electromagnetics in Time-domain. c2007:1-4.
[15] Liu G, Gedney S D. Perfectly matched layer media for an unconditionally stable three-dimensional ADI-FDTD method [J]. IEEE Microwave and Guided Wave Letters, 2000, 10(7): 261-263.
[16] Gedney S D, Liu G, Roden J A, et al. Perfectly matched layer media with CFS for an unconditionally stable ADI-FDTD method [J]. IEEE Transactions on Antennas and Propagation, 2001, 49(11): 1554-1559.
[17] Wang S, Teixeira F L. An efficient PML implementation for the ADI-FDTD method[J]. IEEE Microwave and Wireless Components Letters, 2003, 13(2): 72-74.
[18] Zhao A P. Comments on" An efficient PML implementation for the ADI-FDTD method"[J]. IEEE Microwave and Wireless Components Letters, 2004, 14(5): 248-249.
[19] Sun S H, Choi C T M. Performance of the improved PML for the envelope ADI-FDTD method in two-dimensional domain[J]. IEEE Microwave and Wireless Components Letters, 2005, 15(11): 820-822.
[20] Ramadan O. An implicit 4-stage ADI wave-equation PML algorithm for 2-D FDTD simulations[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 391-393.
[21] Wu P Y, Jiang H L, Xie Y J, et al. Three-dimensional higher order PML based on alternating direction implicit algorithm[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(12): 2592-2596.
[22] Chenghao Yuan and Zhizhang Chen. A three-dimensional unconditionally stable ADI-FDTD method in the cylindrical coordinate system[J]. IEEE Transactions on Microwave Theory and Techniques, Oct. 2002, 50(10):2401-2405.
[23] H. L. Chen, B. Chen, Y. Yi and D. G. Fang. Unconditionally Stable ADI–BOR–FDTD Algorithm for the Analysis of Rotationally Symmetric Geometries[J]. IEEE Microwave and Wireless Components Letters, April 2007, 17(4):304-306.
[24] Y. G. Wang, B. Chen, H. L. Chen, et.al. One-Step Leapfrog ADI-FDTD Method in 3-D Cylindrical Grids With a CPML Implementation[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13:714-717.
[25] Chai M, Xiao T, Liu Q H. Conformal method to eliminate the ADI-FDTD staircasing errors[J]. IEEE Transactions on Electromagnetic Compatibility, 2006, 48(2): 273-281.
[26] Fujita K, Kochibe Y, Namiki T. Numerical investigation of conformal ADI-FDTD schemes with second-order convergence[J]. IEICE Transactions on Electronics, 2010, 93(1): 52-59.
[27] Dai J, Chen Z Z, Su D L, et al. Stability analysis and improvement of the conformal ADI-FDTD methods[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(6): 2248-2258.
[28] Bao H G, Chen R S. An efficient domain decomposition parallel scheme for leapfrog ADI-FDTD method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1490-1494.
[29] Liu S, Zou B, Zhang L M, et al. A multi-GPU accelerated parallel domain decomposition one-step leapfrog ADI-FDTD[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5): 816-820.
[30] Shibayama J, Muraki M, Yamauchi J, et al. Efficient implicit FDTD algorithm based on locally one-dimensional scheme[J]. Electronics Letters, 2005, 41(19): 1046-1047.
[31] Shibayama J, Takahashi R, Yamauchi J, et al. Frequency-dependent LOD-FDTD implementations for dispersive media[J]. Electronics Letters, 2006, 42(19):1084-1085.
[32] Li E P, Ahmed I, Vahldieck R. Numerical dispersion analysis with an improved LOD–FDTD method[J]. IEEE Microwave and Wireless Components Letters, 2007, 17(5): 319-321.
[33] Ding J C, Yang Y. Development of 2D LOD-FDTD method with low numerical dispersion in lossy media[J]. Electronics Letters, 2018, 54(10): 624-626.
[34] Liu Q F, Yin W Y, Chen Z, et al. An efficient method to reduce the numerical dispersion in the LOD-FDTD method based on the (2, 4) stencil[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(7): 2384-2393.
[35] Ahmed I, Chua E K, Li E P. Numerical dispersion analysis of the unconditionally stable three-dimensional LOD-FDTD method[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(12): 3983-3989.
[36] Saxena A K, Srivastava K V. Three-dimensional unconditionally stable LOD-FDTD methods with low numerical dispersion in the desired directions[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 3055-3067.
[37] H. Zhang and Y. Zhou. An unconditionally stable LOD-FDTD method in cylindrical coordinates. 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shenzhen, China, c2012:1-4.
[38] Shibayama J, Ito M, Yamauchi J, et al. A Fundamental LOD-FDTD Method in Cylindrical Coordinates[J]. Photonics Technology Letters, IEEE, 2017, 29(11):865-868.
[39] Wei X K, Shao W, Shi S B, et al. An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme[J]. Chinese Physics B, 2015, 24(7): 070203.
[40] Ahmed I, Li E P, Krohne K. Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method[J]. IEEE Microwave and Wireless Components Letters, 2007, 17(12): 816-818.
[41] F. Liang, G. Wang, H. Lin and B. Z. Wang. Mur Absorbing Boundary Condition for Three-Step 3-D LOD-FDTD Method[J]. IEEE Microwave and Wireless Components Letters, Nov. 2010, 20(11):589-591.
[42] Nascimento V E, Borges B H V, Teixeira F L. Split-field PML implementations for the unconditionally stable LOD-FDTD method[J]. IEEE Microwave and Wireless Components Letters, 2006, 16(7): 398-400.
[43] Ramadan O. Unsplit field implicit PML algorithm for complex envelope dispersive LOD-FDTD simulations[J]. Electronics Letters, 2007, 43(5): 17-18.
[44] Ahmed I, Khoo E H, Li E P. Development of the CPML for three-dimensional unconditionally stable LOD-FDTD method[J]. IEEE Transactions on Antennas and Propagation, 2009, 58(3): 832-837.
[45] Lee J, Fornberg B. A split step approach for the 3-D Maxwell's equations[J]. Journal of Computational and Applied Mathematics, 2003, 158(2): 485-505.
[46] E. Forest, R. D. Ruth. Fourth order symplectic integration[J]. Phys.D,1990, 43:105-117.
[47] H. Yoshida. Construction of higher order symplectic integrators[J]. Phys. Lett.A, 1990, 150: 262-268.
[48] R. McLachlan. Symplectic integration of Hamiltonian wave equations[J]. Numer.Math., 1994, 66:465-492.
[49] B. Fornberg, T. A. Driscoll. A fast spectral algorithm for nonlinear wave equations with linear dispersion[J]. J. Comput. Phys., 1999, 155:456-467.
[50] Fu W, Tan E L. Compact higher-order split-step FDTD method[J]. Electronics Letters, 2005, 41(7): 397-399.
[51] Xiao F, Tang X, Guo L, et al. High-order accurate split-step FDTD method for solution of Maxwell's equations[J]. Electronics Letters, 2007, 43(2): 72-73.
[52] Chu Q X, Kong Y D. High-order accurate FDTD method based on split-step scheme for solving Maxwell's equations[J]. Microwave and Optical Technology Letters, 2009, 51(2): 562-565.
[53] Ramadan O. On the accuracy of three different six stages SS-FDTD methods for modeling narrow-band electromagnetic applications[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(9): 3078-3080.
[54] Kong Y D, Chu Q X, Li R L. Two efficient unconditionally-stable four-stages split-step FDTD methods with low numerical dispersion[J]. Progress In Electromagnetics Research, 2013, 48: 1-22.
[55] Zhou J Y, Zhao J N. A novel absorbing boundary condition for the 3-D split-step FDTD method[J]. IEEE Microwave and Wireless Components Letters, 2012, 22(4): 167-169.
[56] Singh G, Tan E L, Chen Z N. Split-step finite-difference time-domain method with perfectly matched layers for efficient analysis of two-dimensional photonic crystals with anisotropic media[J]. Optics letters, 2012, 37(3): 326-328.
[57] Ding J C. A Novel Unconditionally Stable SS-FDTD Method With Isotropic Dispersion[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(8): 633-635.
[58] THOMAS, J.W. Numerical partial differential equalions[C], Springer-Verlag, New York, 1998.
[59] SMITH. G. D. Numerical solution of partial differential eauations: finite difference methods[M] Clarendon Press, Oxford University Express, Oxford 1985, 3rd edn.
[60] Sun G, Trueman C W. Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell's equations[J]. Electronics Letters, 2003, 39(7): 595-597.
[61] Wei X K, Shao W, Ou H. Domain decomposition CN-FDTD method for analyzing dispersive metallic gratings[J]. IEEE Photonics Journal, 2017, 9(4): 1-18.
[62] Wei X K, Shao W, Wang X H, et al. Domain decomposition CN-FDTD with unsplit-field PML for time-reversed channel analysis[J]. Radiao engineering, 2018, 27: 469-474.
[63] Xu K, Fan Z H, Ding D Z, et al. GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits[J]. Progress In Electromagnetics Research, 2010, 102: 381-395.
[64] Dagang Wu and Ji Chen. Perfectly matched layer for Crank-Nicolson (CN) FDTD method[C]// IEEE Antennas and Propagation Society Symposium, 2004., Monterey, CA, USA, c2004:583-586.
[65] Chung Y S, Sarkar T K, Jung B H, et al. An unconditionally stable scheme for the finite-difference time-domain method[J]. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(3): 697-704.
[66] Duan Y T, Chen B, Yi Y. Efficient implementation for the unconditionally stable 2-D WLP-FDTD method[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(11): 677-679.
[67] Wei X K, Shao W, Shi S B, et al. An optimized higher order PML in domain decomposition WLP-FDTD method for time reversal analysis[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4374-4383.
[68] Xu B A, Duan Y T, Chen B, et al. A new efficient algorithm for the 2D WLP-FDTD method based on domain decomposition technique[J]. International Journal of Antennas and Propagation, 2016, 2016(3):1-6.
[69] Yi Y, Chen B, Sheng W X, et al. A memory-efficient formulation of the unconditionally stable FDTD method for solving Maxwell's equations[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3729-3733.
[70] Duan Y T, Chen B, Yi Y, et al. Extension of a Memory-Efficient Formulation for the Unconditionally Stable WLP-FDTD Method[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(11): 725-727.
[71] Z. Chen, Y. T. Duan, Y. R. Zhang and Y. Yi. A New Efficient Algorithm for the Unconditionally Stable 2-D WLP-FDTD Method[J]. IEEE Transactions on Antennas and Propagation, July 2013, 61(7): 3712-3720.
[72] Yi Y, Chen B, Chen H L, et al. TF/SF boundary and PML-ABC for an unconditionally stable FDTD method[J]. IEEE Microwave and Wireless Components Letters, 2007, 17(2): 91-93.
[73] Duan Y T, Chen B, Chen H L, et al. PML absorbing boundary condition for efficient 2-D WLP-FDTD method[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 846-849.
[74] Wei X K, Shao W, Shi S B, et al. An optimized higher order PML in domain decomposition WLP-FDTD method for time reversal analysis[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4374-4383.
[75] Liu J F, Fang Y, Xi X L, et al. A new effective SC-PML implementation for WLP-FDTD method[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(8): 499-501.
[76] Wei X K, Shao W, Ou H, et al. An efficient higher-order PML in WLP-FDTD method for time reversed wave simulation[J]. Journal of Computational Physics, 2016, 321: 1206-1216.
[77] Fang Y, Xi X L, Liu J F, et al. An Effective SC-PML Implementation for Iterative WLP-FDTD Method With Reduced Splitting Error[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(3): 209-211.
[78] Y. Qin, C. Bin, X. Run and C. Zhaoyang. An unconditionally stable FDTD with weighted Laguerre polynomials in cylindrical coordinates[C]//2011 IEEE International Conference on Microwave Technology & Computational Electromagnetics, Beijing, China, c2011:418-421.
[79] Yin Qin, Chen Bin, Xiong Run, Yang Xiaoshuan and Zhou Bihua. PML implementation for WLP-FDTD in cylindrical coordinates[C]//2009 5th Asia-Pacific Conference on Environmental Electromagnetics, Xi'an, China, c2009:357-360.
[80] W. J. Chen, W. Shao, J. L. Li and B. Z. Wang. A Two-Dimensional Nonorthogonal WLP-FDTD Method for Eigenvalue Problems[J]. IEEE Microwave and Wireless Components Letters, Oct. 2013, 23(10): 515-517.
[81] Z. Y. Cai, B. Chen, Q. Yin and R. Xiong. The WLP-FDTD Method for Periodic Structures With Oblique Incident Wave[J]. IEEE Transactions on Antennas and Propagation, Oct. 2011, 59(10): 3780-3785.
[82] Huang Z Y, Shi L H, Chen B, et al. A new unconditionally stable scheme for FDTD method using associated Hermite orthogonal functions[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(9): 4804-4809.
[83] Huang Z Y, Shi L H, Zhou Y H, et al. An improved paralleling-in-order solving scheme for AH-FDTD method using eigenvalue transformation[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(5): 2135-2140.
[84] Pan Z, Fu Z K, Shi L H, et al. A Modified AH-FDTD Unconditionally Stable Method Based on High-Order Algorithm[J]. Mathematical Problems in Engineering, 2017:1-7.
[85] Huang Z Y, Shi L H, Si Q, et al. Unconditionally stable associated hermite FDTD with plane wave incidence[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 938-941.
[86] Huang Z Y, Shi L H, Zhou Y, et al. UPML-ABC and TF/SF boundary for unconditionally stable AH-FDTD method in conductive medium[J]. Electronics Letters, 2015, 51(21): 1654-1656.
[87] Z. Y. Huang, L. H. Shi and B. Chen. Efficient Implementation for the AH FDTD Method With Iterative Procedure and CFS-PML[J]. IEEE Transactions on Antennas and Propagation, May 2017, 65(5):2728-2733.
[88] Huang Z, Shi L, Huang Z, et al. A theoretical extension of AH FDTD method and applications in various physical fields[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2018, 3: 312-318.
[89] Hong R T, Huang Z Y, Shi L H, et al. A Paralleling-in-Order Unconditionally Stable AH FDTD in Cylindrical Coordinates System[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(12): 1041-1043.
[90] Huang Z Y, Shi L H, Chen B. The 3-D Unconditionally Stable Associated Hermite Finite-Difference Time-Domain Method[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5534-5543.
[91] S. Zhu, Z. Y. Huang, C. Li, F. Jiang and L. H. Shi. The Unconditionally Stable Associated Hermite FDTD Method for 3-D Periodic Structure Analysis[J]. IEEE Antennas and Wireless Propagation Letters, Oct. 2022, 21(10):1950-1954.
[92] Zhao A. More accurate and efficient unconditionally stable FDTD method[J]. Electronics Letters, 2002, 38(16):862-864.
[93] Huang B K, Wang G, Jiang Y S, et al. A hybrid implicit-explicit FDTD scheme with weakly conditional stability[J]. Microwave and Optical Technology Letters, 2003, 39(2): 97-101.
[94] Chen J, Wang J G. A three-dimensional semi-implicit FDTD scheme for calculation of shielding effectiveness of enclosure with thin slots[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(2): 354-360.
[95] Chen J, Wang J G. Three-dimensional dispersive hybrid implicit-explicit finite-difference time-domain method for simulations of graphene[J]. Computer Physics Communications, 2016, 207: 211-216.
[96] M. Unno, S. Aono and H. Asai. GPU-Based Massively Parallel 3-D HIE-FDTD Method for High-Speed Electromagnetic Field Simulation[J]. IEEE Transactions on Electromagnetic Compatibility, Aug. 2012, 54(4): 912-921.
[97] Chen J, Wang J G. A three-dimensional HIE-PSTD scheme for simulation of thin slots[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(6): 1239-1249.
[98] Ahmed I, Li E P. Convolutional perfectly matched layer for weakly conditionally stable hybrid implicit and explicit-FDTD method[J]. Microwave and Optical Technology Letters, 2007, 49(12): 3106-3109.
[99] Liu Z X, Chen Y, Sun X G, et al. Implementation of CFS-PML for HIE-FDTD Method[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 381-384.
[100] Dong M, Chen J, Zhang A X. Fourth-order hybrid implicit and explicit-FDTD method[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2016, 29(2): 181-191.
[101] J. Ding. Low Numerical Dispersion 3-D HIE-FDTD Methods With Weaker Stability Condition[J]. IEEE Antennas and Wireless Propagation Letters, July 2021, 20(7):1327-1331.
[102] Wang X H, Gao J Y, Teixeira F L. One-step leapfrog HIE-FDTD for Drude media[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(2): 77-79.
[103] Kong Y D, Zhang C B, Chu Q X. An optimized one-step leapfrog HIE-FDTD method with the artificial anisotropy parameters[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(2): 1198-1203.
[104] J. Wang, B. Zhou, L. Shi, C. Gao and B. Chen. A Novel 3-D HIE-FDTD Method With One-Step Leapfrog Scheme[J]. IEEE Transactions on Microwave Theory and Techniques, June 2014, 62(6): 1275-1283.
[105] Zhang K L, Wang L, Wang M J, et al. Applications of anisotropic one-step leapfrog HIE-FDTD method in microwave circuit and antenna[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30(5): 1-10.
[106] J. Shibayama, T. Hara, M. Ito, J. Yamauchi and H. Nakano. Improved Cylindrical HIE-FDTD Method and Its Application to a Metal Disk-Type Surface Wave Splitter[J]. IEEE Microwave and Wireless Components Letters, March 2019, 29(3):177-179.
[107] J. Chen and J. Wang. The Body-of-Revolution Hybrid Implicit–Explicit Finite-Difference Time-Domain Method With Large Time Step Size[J]. IEEE Transactions on Electromagnetic Compatibility, May 2008, 50(2): 369-374.
[108] Muraoka H, Inoue Y, Sekine T, et al. A hybrid implicit-explicit and conformal (HIE/C) FDTD method for efficient electromagnetic simulation of nonorthogonally aligned thin structures[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(3): 505-512.
[109] J. Wang, J. Wang, B. Zhou, Q. Wu, C. Gao and F. Guo. HIE-FDTD Method With PML for 2-D Periodic Structures at Oblique Incidence[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15:984-987.
[110] Sarris C D. Extending the stability limit of the FDTD method with spatial filtering[J]. IEEE Microwave and Wireless Components Letters, 2011, 21(4): 176-178.
[111] C. Chang and C. D. Sarris. An efficient implementation of a 3D spatially-filtered FDTD subgridding scheme[C]//Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, IL, USA, c2012:1-2.
[112] G. Xie, Z. Huang, B. Wu and X. Wu. A Hybrid Algorithm Based on FDTD and Spatially filtered FDTD methods for Multiscale Problem[C]//2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Xuzhou, China, c2018: 1-3.
[113] Q. Lei, J. Wang, L. Shi, Q. Zhang and S. Fu. Efficient Leapfrog 2-D SF FDTD Method for Periodic Structures[C]//2018 International Applied Computational Electromagnetics Society Symposium - China (ACES), Beijing, China, c2018:1-2.
[114] Xu J, Xie G D. A novel hybrid method of spatially filtered FDTD and subgridding technique[J]. IEEE Access, 2019, 7: 85622-85626.
[115] Gaffar M, Jiao D. An explicit and unconditionally stable FDTD method for 3-D electromagnetic analysis[C]//2013 IEEE MTT-S International Microwave Symposium Digest, MTT 2013, June 2, - June 7, c2013:1-4.
[116] Gaffar M, Jiao D. An explicit and unconditionally stable FDTD method for electromagnetic analysis [J]. IEEE Transactions on Microwave Theory Techniques, 2014, 62(11): 2538-2550.
[117] Gaffar M, Jiao D. Alternative method for making explicit FDTD unconditionally stable [J]. IEEE Transactions on Microwave Theory Techniques, 2015, 63(12): 4215-4224.
[118] Gaffar M, Jiao D. An explicit and unconditionally stable FDTD method for the analysis of general 3-D lossy problems [J]. IEEE Transactions on Antennas Propagation, 2015, 63(9): 4003-4015.
[119] Yan J, Jiao D. Explicit and unconditionally stable FDTD method without eigenvalue solutions[C]// 2016 IEEE MTT-S International Microwave Symposium (IMS). IEEE, 2016: 1-4.
[120] Yan J, Jiao D. Fast explicit and unconditionally stable FDTD method for electromagnetic analysis[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(8): 2698-2710.
[121] Yan J, Jiao D. Symmetric positive semidefinite FDTD subgridding algorithms for arbitrary grid ratios without compromising accuracy[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(12): 5084-5095.
[122] Yan J, Jiao D. An unsymmetric FDTD subgridding algorithm with unconditional stability[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8): 4137-4150.
[123] Zeng K Y, Jiao D. Symmetric positive semi-definite FDTD subgridding algorithms in both space and time for accurate analysis of inhomogeneous problems[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 3047-3059.
[124] He X B, Wei B, Fan K H, et al. New hybrid FDTD algorithm for electromagnetic problem analysis[J]. Chinese Physics B, 2019, 28(7): 074102.
[125] He X B, Wei B, Fan K H. An explicit Newmark-FDTD algorithm with subgridding technique[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2383-2387.
[126] 葛德彪, 魏兵. 电磁波理论 [M]. 北京: 科学出版社, 2011.
[127] 葛德彪, 闫玉波. 电磁波时域有限差分方法 [M]. 西安: 西安电子科技大学出版社, 2011.
[128] 何欣波. 新型显式无条件稳定FDTD方法研究[D].西安电子科技大学,2021.
[129] J. Ji and Y. Ma. Tunability Study of Plasma Frequency Selective Surface Based on FDTD[J]. IEEE Transactions on Plasma Science, March 2019, 47(3):1500-1504.
[130] 张雪芹,王均宏,李铮.微带阵列天线的时域散射特性[J].物理学报,2011,60(05):186-193.
[131] 许林青,赵建平,张仕顺等.基于FDTD算法的周期结构分析[J].通信技术,2019,52(04):828-832.
[132] 范凯航. 基于空间滤模的无条件稳定FETD方法研究[D].西安电子科技大学,2021.
[133] 李夏,薛唯,蒋玉蓉等.光子晶体的制备方法及其应用[J].光学技术,2006(06):871-878.
[134] E. Yablonovitch.Photonic band-gap structures[J].J. Opt. Soc. Amer, 1993, 10(2): 283.
[135] 朱志宏. 用时域有限差分方法(FDTD)研究光子晶体传输特性[D].中国人民解放军国防科学技术大学, 2002.
[136] 申俊华. 一维光子晶体的禁带特性研究[D].东北大学,2008.
[137] 张金花. 二维复周期光子晶体禁带特性及缺陷态研究[D].江苏大学,2018.
[138] S. Li, H. Liu, Q. Sun and N. Huang. A Tunable Terahertz Photonic Crystal Narrow-Band Filter[J]. IEEE Photonics Technology Letters, April 2015, 27(7):752-754.
[139] Y. Tsuji, Y. Morita and K. Hirayama. Photonic Crystal Waveguide Based on 2-D Photonic Crystal With Absolute Photonic Band Gap[J]. IEEE Photonics Technology Letters, Nov.15, 2006, 18(22): 2410-2412.
[140] 肖利,雷天宇,梁禺等.二维函数光子晶体[J].物理学报,2016,65(13):160-168.
[141] S. Hadzialic, S. Kim, A. S. Sudbo and O. Solgaard. Two-Dimensional Photonic Crystals Fabricated in Monolithic Single-Crystal Silicon[J]. IEEE Photonics Technology Letters, Jan. 2010, 22(2):67-69.
[142] N. J. Florous, K. Saitoh and M. Koshiba. Modeling of two-dimensional photonic crystal resonant cavities incorporating elliptically shaped dielectric cylinders[J]. IEEE Photonics Technology Letters, Nov. 2005, 17(11):2316-2318.
[143] 闫刚印,王继刚.光子晶体应用研究进展[J].中国材料进展,2014,33(Z1):630-635.
[144] Y. Wang, B. Wei and K. Fan. Analysis of transmission characteristics of EBG structures by subgridding unconditionally stable FETD[J]. The Applied Computational Electromagnetics Society Journal (ACES) , Feb. 2023, 37(9):921-932.
[145] 张华. 基于高计算效率时域有限差分算法的舱内电磁环境分析[D].南京航空航天大学,2012.
[146] 李禹华. 用柱坐标系下的时域有限差分法分析曲边波导问题[D].云南师范大学,2009.
[147] 邓洪. 开槽波导及同轴线传输特性[D].四川师范大学,2008.
[148] K. Fan, B. Wei, X. He, Y. Li and X. Wei. A Hybrid FETD Algorithm for Electromagnetic Modeling of Fine Structures[J]. IEEE Antennas and Wireless Propagation Letters, Dec. 2019, 18(12):2771-2775.
[149] 魏晓琨. 无条件稳定的电磁场区域分解时域有限差分方法及应用研究[D].电子科技大学,2018.
中图分类号:

 O45    

馆藏号:

 56199    

开放日期:

 2024-03-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式